
Adaptive Depth Computational Policies for Visual Tracking
Chris Ying and Katerina Fragkiadaki

Machine Learning Department, Carnegie Mellon University

Objectives

•Design and train a fully convolutional
neural network to perform metric learning
at multiple network depths

•Learn an adaptive policy to control the depth
of evaluation at runtime to balance
accuracy and computational cost

Background

Video tracking.
Input: Labelled key frame with object bounding
box, unlabelled subsequent search frames
Output: Bounding box of object in search frames

Figure 1: Preprocessed key and search frames extracted from
VOT2016. Bounding boxes added for visualization.

Observation: some frames are "harder" to track than
others (e.g. due to occlusion or change in shape)

Fully convolutional Siamese network.

Figure 2: Deep feature maps are extracted from key and
search frame using the same fully convolutional network. Met-
ric learning implemented via 2D cross-correlation1 (∗). Out-
put is a spatial map with similarity score at each coordinate.

Observation: CNNs are feature extractors for im-
ages, the intermediate activations are also feature
maps. Deeper feature maps encode higher-level in-
formation but also take more computation.

Key idea: learn to use different network depths
for different video frames depending on how difficult
it is to perform tracking.

1 2D cross-correlation can be efficiently implemented efficiently on GPU
via 2D convolution by treating the key frame deep feature map as a con-
volutional filter with 1 output channel.

Methods

Target map G is a 2D Gaussian centered at the
ground truth object offset. Loss of i-th cross-
correlation map Ci is softmax cross-entropy loss:

C ′i(x, y) = exp(Ci(x, y))∑
x,y exp(Ci(x, y))

(1)

Li(Ci, G) = − 1
|C|

∑
x,y
C ′i(x, y) log(G(x, y)) (2)

Train phase 1: training convolutional weights:

Lfinetune(deepest) = L5 Lfinetune(all) =
5∑
i=1
Li (3)

Gating function at i-th depth is a linear predictor ϕi
on top of hand-designed features vi (incl. kurtosis,
entropy) extracted from each cross-correlation map
with sigmoid activation. Output values measure
"confidence" of the current layer’s map (designed to
sum to 1.0):

ci =

(1.0−∑i−1
n=1 cn)σ(ϕi(vi)) i ∈ [1, 4]

1.0−∑4
n=1 cn i = 5

(4)

Train phase 2: training gate function weights:

Lgating =
5∑
i=1
ciLi︸ ︷︷ ︸

Lpred

+λ
5∑
i=1
pi−1ci︸ ︷︷ ︸
Lcomp

(5)

Prediction policies:
fixed depth: xcorr1, xcorr2, xcorr3, xcorr4, xcorr5
soft-gating: ci-weighted average of xcorr layers
hard-gating: shallowest layer with ci > T

Results

Figure 3: Train and test curves over epochs trained.
Intersection-over-union (IOU) averaged over up-to 1, 5, and
25 frames ahead of the key frame. Current state-of-the-art
trackers perform at 0.5 ∼ 0.6 IOU.

Figure 4: Comparison of finetuning with loss on deepest layer
only vs. all layers. Training with deepest layer yields slightly
higher accuracy at xcorr5 at the cost of lower accuracy at
shallower depths.

Table 1: Theoretical floating point operations (FLOPs) per
key-search pair for prediction policies

Pred. policy FLOPs (×109) Relative to xcorr1
xcorr1 2.78 1.00×
xcorr2 67.70 2.43×
xcorr3 160.75 5.78×
xcorr4 253.79 9.12×
xcorr5 280.37 10.07×
soft-gating 280.53 10.08×
hard-gating varies varies

Model Architecture

Figure 5: End-to-end architecture for visual tracking. Convolutional blocks contain 2-4 convolutional layers with ReLU
activation followed by max pool. Layers are adapted from 19-layer VGG architecture using pre-trained weights on ImageNet
for classification (fully connected layers removed). Implemented in TensorFlow. Runs at 57 FPS (xcorr1) and 38 FPS (xcorr5)
on NVIDIA TITAN X and Intel Xeon E5-2630 v3.

Figure 6: Comparison of accuracy and cost of different pre-
diction policies. Hard-gating is hyperparameter sensitive so
values at various settings are reported.

Figure 7: Select tracking outputs (green box is ground truth,
red box is prediction, red numbers are confidence weights).
In (a) and (b), the tracker learns that xcorr1 is sufficient for
tracking. In (c) and (d), tracking is more difficult and the
tracker learns that it needs to compute xcorr5 in order to
confidently track the object.

Conclusions

•Fully convolutional Siamese networks work
reasonably well for object tracking without
needing to train on the object being tracked
during test time

•Using conditional computation via gating can
save computation without losing
commensurate representational power

Future Work

• Improve accuracy by increasing resolution of
cross-correlation map localized on coarse
bounding box prediction

•Perform test time training on key and search
frames to improve tracking for subsequent frames

