Introduction

Event extraction is the task of identifying discrete events from free text. It is generally divided into four steps [1]:

- **1** Identify event anchors
- 2 Match related entities
- Assign attributes
- Coreference event mentions

A <u>powerful bomb</u> tore through <u>a waiting</u> <u>shed</u> at the <u>Davao City</u> <u>international airport</u>.

explodes in the <u>airport</u> of the <u>fourth</u> Bom <u>largest city</u> in the <u>Philippines</u> last <u>Tuesday</u>.

Figure 1: Two coreferring events. The event anchors are bolded and the entities are underlined. Attributes not shown.

The motivation for this project is to utilize **prior** world knowledge to construct entity relations which provide evidence for event coreference.

Objectives

- Develop a model for representing events, entities, and prior world knowledge
- Extract salient features from the model and train a pairwise classifier for coreference
- Improve the performance of event coreference by utilizing rich features

Resources used in this project:

- ECB+ corpus: 982 annotated news documents with 90 topics
- YAGO ontology: semantic knowledge base created using Wikipedia and WordNet
- DBpedia ontology: semantic knowledge graph with over 4.5 million entities and their relations

- Event anchor match (baseline)
- ② Distance between bag-of-words-of-entities
- **3** Distance between YAGO entities
- Distance between DBpedia entities

To give more weight to more salient entities, features 2 - 4 use TF-IDF weighting (treat topics as documents). We represent each event as a vector v.

Since the vector is very sparse, we use cosine distance to measure event similarity.

Using these extracted features, we train a **logistic regression** classifier to output whether the event pair is coreferencing or not.

1
ECB+ doc
\sim
\square
KB's
\smile

Improving Event Coreference using Knowledge Bases

Chris Ying and Bishan Yang Machine Learning Department, Carnegie Mellon University

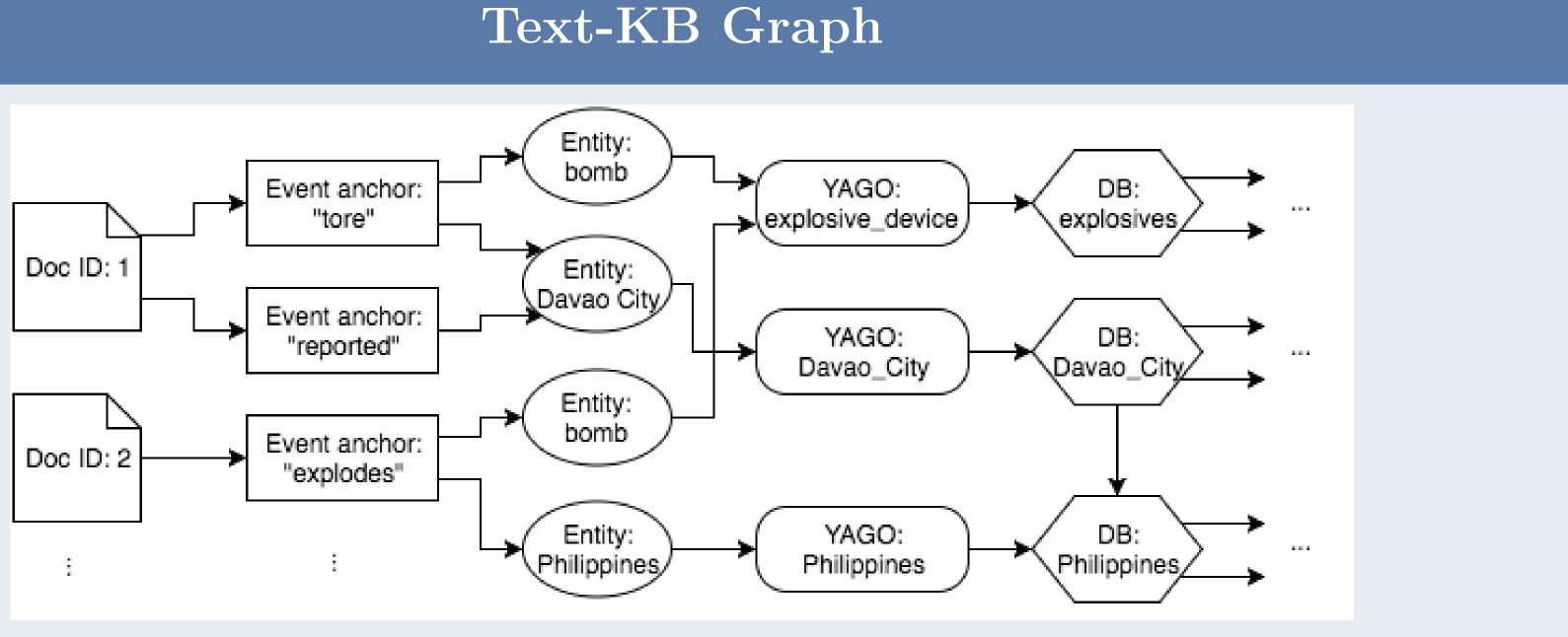


Figure 2: Text-KB graph. Layers of the graph from left to right: documents, events, entities, YAGO entities, DBpedia entities. The "rich" features are YAGO and DBpedia entities. We can choose to traverse any number of layers into the DBpedia graph.

Methods

Features extracted for each pair of events:

$$v_i = \mathtt{tf}_i * \log \frac{N}{\mathtt{df}_i} \tag{1}$$

$$dist_{u,v} = 1 - \frac{u \cdot v}{\|u\| \|v\|}$$
(2)

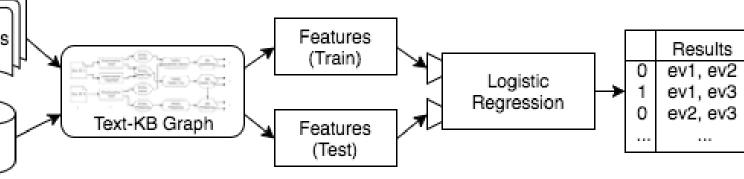
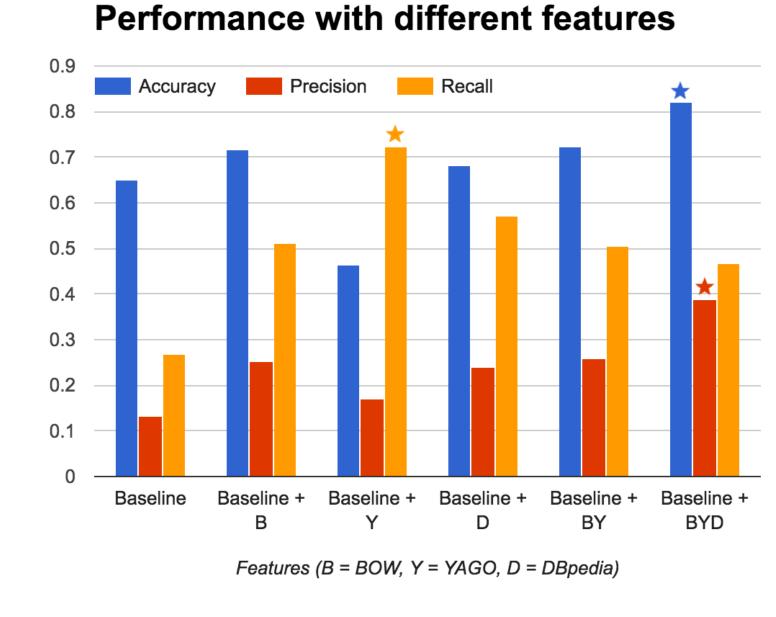



Figure 3: Coreference pipeline.

An earthquake 4.6 rattled Sono Lake Counties.
Three shells hit Fak girls' elementary so Jabalya refugee can northern Gaza.
1
Indianapolis (11-4) NFL-best fourth dou comeback this this s lock up the five seed

by the rich model.

Results

Figure 4: Pairwise coreference performance on a test set.

Figure 5: Events coreferenced Figure 6: Events NOT coreferenced by the rich model.

Conclusion

As seen from the results in Figure 4, the model utilizing all rich features beats the baseline and shallow models in nearly all metrics. The Text-KB graph allows us to utilize real-world knowledge to better match events in free-text. From manually inspecting the coreferenced outputs, we know that the system: Performs well with: Performs poorly with: Similar event mention • Significantly different mention lengths lengths • Multiple unrelated Closely related entities events/entities incl. (e.g. geographic) • Well-known entities, Unrecognized named

- esp. from Wikipedia entities

Future Work

- Extract features from the structure of the graph (e.g. edges, connectivity)
- Link the Text-KB graph to additional knowledge bases including NELL
- Use dependency parsing and event frames to better represent event-entity relations

References

[1] David Ahn. The Stages of Event Extraction. Proceedings of the Workshop on Annotating and Reasoning about Time and Events, 2006.

Acknowledgements

Thank you to Bishan Yang, Tom Mitchell, and the entire Read the Web team for feedback on improving my project.

