

NAS-Bench-101: Towards Reproducible Architecture Search Chris Ying^{*1}, Aaron Klein^{*2}, Esteban Real¹, Eric Christiansen¹, Kevin Murphy¹, Frank Hutter²

Motivation

Neural architecture search (NAS) methods are notoriously difficult to reproduce and compare:

- **Different search spaces** have different implicit biases
- 2. **Compute cost** limits number of trials and makes methods inaccessible to most researchers
- 3. Different methods use **different training procedures**

Our contribution: exhaustively evaluate all networks within a general search space \rightarrow NAS-Bench-101

Enables:

- 1. Analysis of search space landscape as a whole
- 2. Cheap benchmarking of various NAS algorithms by querying the tabular dataset.

Dataset and code available at: https://github.com/google-research/nasbench

¹Google Brain, ²University of Freiburg contact@chrisying.net, kleinaa@cs.uni-freiburg.de, ereal@google.com

Dataset

Architecture:

- Feedforward backbone with searched cells • Cells are directed acyclic graphs with 3 operations: • 3x3 convolution 1x1 convolution
- 3x3 max-pool • Limits to number of vertices &
- edges to keep dataset tractable
- Includes ResNet-like and Inception-like cells

~423K <u>unique</u> cells * 4 epoch budgets = ~5M total models trained

- Best cell is not most computationally expensive; ResNet & Inception are near Pareto frontier
- Correlation between small budget and large budget is low between top models

	Sp	earman	Rank
Epochs 4 / 12	0.172	0.170	0.336
Epochs 4 / 36	0.073	0.128	0.203
Epochs 4 / 108	0.041	0.078	0.226
Epochs 12 / 36	0.176	0.344	0.492
Epochs 12 / 108	0.090	0.191	0.383
Epochs 36 / 108	0.226	0.495	0.737
ľ	Top 1%	Top 10%	[Pop 25%]

Benchmarking

• **Right**: comparison of various optimizers from the literature: \rightarrow HB* Hyperband (HB), Random search (RS), ---- RS SMAC, TPE, Regularized evolution (RE), -- RS -- NRE -- RE ---- SMAC BOHB and Reinforcement learning (RL) TPE -- RE • BOHB / RE / SMAC work equally well ---- BOHB* and achieve the lowest regret, RL is worse. -*- RL TPE and HB do not work better than RS in this case RE, p=2.0 estimated wall-clock time (seconds) • Details: x-axis is estimated wall-clock time it *would* have taken to run on the original benchmark (but using the tabular benchmark, evaluation only takes a few seconds); y-axis is the average distance to the best average test error (i.e., simple regret) RE, t=10 • Left: to investigate the robustness of BOHB* optimizers we show the cumulative ---- SMAC distribution of the final regret after - RE 10⁷ seconds over all 500 Г<u>н</u> О 0.4----- RI independent runs of each optimizer • None of the optimizers consistently converges to the same final regret provide the second second (22245222) and even the best methods only achieve a final regret of 10⁻³ in 50% 10^{-2} final test regret of the cases

